The Small World Initiative (SWI) challenges over 8,000 students to solve a “real-life” medical problem – antibiotic resistance – while training for higher-paying STEM jobs. Real research projects like SWI increase STEM diversity by better engaging women and minorities with a reason for their training. 

The World Health Organization celebrates Antibiotic Awareness Week November 14-20 to raise awareness about the importance of properly using antibiotics. Since antibiotics were first developed in the 1940’s, they have saved countless lives. However, we have overused and misused antibiotics and are now confronted with the idea of an “antibiotic winter”, where bacterial pathogens have evolved resistance to these life-saving drugs rendering them useless. To make matters worse, the big pharmaceutical companies are not investing in research for new antibiotics because rediscovery rate is high. Antibiotics are simply not as profitable as other drugs. Academia and citizen science can fill this gap in novel antibiotic discovery by doing the initial discovery process, while teaching students valuable microbiology techniques. Once potential products are identified, then academic-private partnerships can be formed to get the antibiotic through testing and hopefully to market. The Small World Initiative is one such academic group sifting through hundreds of thousands of soil microbes for new antibiotic compounds.

Small World Initiative
Student Katherine Bell (left) and Dr. Nichole Broderick, Assistant Professor of Molecular and Cell Biology at University of Connecticut examine bacterial samples (Photo courtesy of SWI Blog and PETER MORENUS/UCONN)

“I’ll never use this”, a leaky STEM pipeline 

Student apathy, increasing emergence of antibiotic resistance, and a “leaky” STEM pipeline. These seemingly disparate problems are being solved with one answer – The Small World Initiative [1]. SWI challenges high school and college students to identify novel antibiotics from soil microbes. SWI students have ownership of their projects, see how science can benefit humanity, and develop important job skills for higher paying STEM jobs. Implemented in 12 countries, and 164 institutions, from high school, community and 4 year colleges, SWI is an incredible training tool and important citizen science project. To date, over 8,000 students have been trained by SWI.

Jo Handlesman, PhD at Yale University created SWI in response to a 2012 report from the President’s Council of Advisors on Science and Technology to improve STEM education in the first two years of college and train an additional 1 million STEM college graduates. Women and minorities are found to drop out of STEM programs in these first 2 years of college citing that the courses are meaningless and don’t connect to their life. “Authentic research” laboratories or CURE (Course-Based Undergraduate Research Experiences) are more inclusive [2] and engaging. Traditionally science laboratories have been “cookbook” labs. Students follow predesigned experiments designed to “give them right answer” in the end. However, science doesn’t work like that and students become more involved and excited about their projects when they test their own hypotheses. Hence, the authentic research, with SWI as an excellent example of a CURE for introductory microbiology classes.

Small World Initiative
2016 map of schools participating in Small World Initiative, image from SWI

 

Revamping old labs to make new discoveries

Nicole Broderick, PhD, Assistant Professor at University of Connecticut and current SWI program coordinator, said that students learn standard microbiology techniques because they are invested in doing “real science” and have a chance to discover something new. The SWI lab module replaces the typical “microbiology unknown” lab, where Microbiology students screen standard, known (to the instructor) bacterial cultures to determine what the bacterium is. In this case, the unknown is unknown to student and teacher.  Since similar resources are used to a standard microbiology “unknown” lab, cost isn’t an issue for most schools.

SWI students make the decisions from the beginning. Where should they sample? Are there habitats that are more likely than others where antibiotics might be an important survival strategy for microbes? Dr. Broderick has known students to sample everything from the soil near the UConn spray-painted rock, to soil from a grave in the New Haven Cemetery from 1790, to estuaries. Determining where to collect the original sample not only has students thinking about where antibiotic producing bacteria might be, but it also connects them more to their local environment. They realize that there is microscopic life under their feet. Students then collect soil, do dilutions onto whichever media they choose, identify novel morphologies, and isolate ~ 20-30 colonies. Those isolates are screened against safe Gramand Gram+ bacteria for the presence of antibiotics. Students use molecular (16S rRNA) techniques and standard biochemical characterizations to characterize their 2 or 3 antibiotic producing strains.

Small World Initiative
Bacterial colonies on Blood Agar Media. Image from  the McGill Reporter 

Dr. Broderick has been conducting SWI programs for 3 years, training about 35 students and 30 teachers, who then start SWI in their classrooms. In her experience, every student has found a bacterium that makes antibiotics. Most of the antibiotics aren’t novel, but identifying even one potential new antibiotic is important. In Dr. Broderick’s course, she has time for students to also design experiments, test, and retest their bacterial isolate for antifungal compounds. By this time in the course, students are familiar enough with the procedures that they are confident and excited about this new challenge. Natural products colleagues in the Chemistry Department of the University of Connecticut collaborate on extracting the products SWI students identify for further testing and characterization. Currently, one of Dr. Broderick’s students has isolated an interesting bacterium that produces a purple pigment. As a chemistry major, the student is completing the SWI course by doing thin layer chromatography plates to separate the pigment from the rest of the compounds being produced by the bacterium. Pigment and compounds are then tested to determine what kills the bacteria. SWI is developing materials to adding the natural products chemistry portion of the research as a standard part of the curriculum for introductory chemistry or biochemistry classes.

Students Helping the World Avoid the Antibiotic Winter?

Small World Initiative helps fill the gap left by private industry in the hunt for novel antibiotics. SWI has quite a challenge to discover novel compounds from environmental bacteria, but they have the right tools, many hands, and determination – a winning combination. I am confident that involving citizens and early-career students in tackling this extreme health care problem, great strides will be made. Not only is there the potential for finding novel compounds, but higher-paid, more diverse work force in STEM fields will be created. SWI also creates consumers informed about the importance of antibiotics and potential benefits from microbes and nature as sources of helpful compounds. Finally, SWI is capturing and preserving a vast collection of culturable microbial soil diversity and their compounds for future generations. No matter how you look at it, this is an incredibly valuable and life-changing CURE for everyone.

 

To find out more about SWI, follow their program, or apply to become a SWI school:

Twitter @Team_SWI, #smallworldinitiative,

Join Our Facebook Group,

Like Us on Facebook,

Subscribe to Our YouTube Channel

See their website: Small World Initiative

Interested in similar projects?

Check out Swab and Send, a novel antibiotic-seeking citizen science project led by Dr. Adam Roberts in the U.D. With Swab and Send, citizen scientists swab different items or places and the Robert’s lab does the isolation and screening.

Additional resources

Un-cooking the Lab: A Guide to Constructing Inquiry-based Labs in Biology,  The Wisconsin Program for Scientific Teaching The Wisconsin Program for Scientific Teaching

 

REFERENCES

  1. Caruso JP, Israel N, Rowland K, Lovelace MJ, Saunders MJ: Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University. Journal of Microbiology & Biology Education 2016, 17(1):156-162.
  2. Bangera G, Brownell SE: Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive. CBE Life Sciences Education 2014, 13(4):602-606.

Share the Microbial Love
Thank you for reading my blog.
Please share this post if you enjoyed it.
If you received something of value from this post or the blog, please consider supporting the blog either directly, through a “tip” at the PayPal link below or indirectly through my affiliate links.


What Do You Think?